Okay, now get to work on your project!! What's that? You still need help getting started? ### Introducing: The Most Fabulous, Scientific, All Helpful, Kid Friendly and Most Excellent Science Fair Project Planner Known to Kid Kind: # Elementary Science Fair Planning Guide Just follow these easy steps and you too can create a wonderful award winning science project, thought up entirely by you!!! VERY IMPORTANT: Before you turn this page, recruit an adult to help you. They come in very handy, especially if you are nice to them and tell them you won't blow up anything.... | My | adult's | name i | S | |----|---------|--------|---| | | | | | From this point forward you are now... A SCIENTIST!! Lora Holt Copyright 2006 # The Elementary Science Fair Planning Guide By Lora Holt (a science lab teacher, pretty cool, for an adult) With help from Tim Holt (a very smart science and technology dude) Inspired by past EPISD science packets. [Thank you Margaret Johnson and all past EPISD Science Gurus] Translated by Morayma Esquivel and Alma Veronica Ortega (two very awesome science teachers who also happen to speak Spanish) # Table of Contents -Or- | What is inside this packet in case you are impatient and you want to jump around | | |--|------| | Types of Science Projects (The Good, the Bad and the Scientific Method)Page | 2 | | So What the Heck is the Scientific Method?Page | : 3 | | Choosing a category that interests youPage | 4 | | Step One: Coming up with a good questionPage | 5 | | Step Two: Doing the research and forming a HYPOTHESISPage | 6 | | Now its your turn: you find the sources and write the hypothesisPage | 7 | | Step Three: Testing the hypothesis by doing the EXPERIMENTPage | 8 | | Time Out: How do you collect DATA??Page | 9 | | Now its your turn: Science Project Organizer worksheetPages 10 | -11 | | Step Four: Presentation, (or why you needed all those pictures)Page | 12 | | What those not so scary judges are looking for/What you should do at science fair Pk-3Page | 13 | | What those not so scary judges are looking for/What you should do at science fair 4-5Page | 14 | | Science Fair Rules and RegulationsPage | : 15 | | Website Resources | 16 | # Types of Science Projects: There are two types of science projects: Models and Experiments. Here is the difference between the two: # A Model, Display or Collection: Shows how something works in the real world, but doesn't really test anything Examples of display or collection projects can be: "The Solar System", "Types of Dinosaurs", "Types of Rocks", "My gum collection..." Examples of models might be: "The solar system" or "How an Electric Motor Works", "Tornado in a Bottle" ### COOL!!!! DO THIS ### **An Experiment:** Lots of information is given, but it also has a project that shows testing being done and the gathering of data. Examples of experiments can be: "The Effects of Detergent on the Growth of Plants", "Which Paper Towel is more Absorbant" or "What Structure can Withstand the Most Amount of Weight" You can tell you have an experiment if you are testing something several times and changing a variable to see what will happens. We'll talk about variables later.... # So What Type of Project Should You Do? Even though you can learn a lot from building a model or display, <u>for our school science fair</u>, <u>an Experiment is REQUIRED</u>. Why? Well, they are fun, they are more interesting and most of all, they take you through the **SCIENTIFIC METHOD**, which is the way real scientists investigate in real science labs. Besides that, the **scientific method** is what the judges are looking for!! # So What is the Scientific Method? # Choosing a category that interests you... All Great Projects start with great questions but before you get started on a great question you need to pick a subject or topic that you like. There are three different categories of the Science Fair to choose from. They are: <u>Life science</u>: This category deals with all animal, plant and human body questions that you might have and want to do an experiment about. Remember that it is against Science Fair Rules to intentionally hurt an animal during an experiment. If you are dealing with animals, please let an adult assist you. It is okay to do experiment on plants, as long as they don't belong to someone else, like don't do an experiment on your mom's rose bushes unless you ask her first... Life science also includes studying behaviors, so its a perfect category to try taste tests, opinion surveys, animal behavior training (or even training behavior in humans...like baby brothers or sisters...) <u>Physical Science</u>: If you like trying to figure out how things work, then this is the category for you! It includes topics about matter and structure, as well as electricity, magnetism, sound, light or anything else that you might question, "How does it work and what if I do this to it, will it still work?" <u>But remember, you always need to ask an adult first (and always make sure there is one of those adult auys with you when you try it.)</u> Physical Science also includes the composition of matter and how it reacts to each other. These are the science experiments that may have bubbling and oozing going on, like figuring out what is an acid and what is a base. It is a perfect category to try to mix things together to see what will happen. Again, if you are experimenting with possibly dangerous things, you need to recruit an adult to help you out. <u>Earth and Space Sciences</u>: This category is really awesome because it covers all sorts of topics that deal with the Earth or objects in space. This includes studying weather, Geology (which is the study of everything that makes up the Earth, like rocks, fossils, volcanoes, etc..), and the study of all that is in space, including the stars, our sun and our planets. Unfortunately this topic is also where most kids mess up and do a collection or model project instead of an "Experiment," so be careful!!! # Now It's Your Turn: Write down your favorite Science Fair Category and what it is you want to learn more about: | My favorite Category was | | | | | | |--------------------------|---|--|--|--|--| | | (Life Science, Physical Science, Earth and Space Science) | | | | | | I want to do an experime | nt involving | # Step 1: Coming up with a Good Question... Now that you have picked out a topic that you like and that you are interested in, it's time to write a question or identify a problem within that topic. To give you an idea of what we mean you can start off by filling in the question blanks with the following list of words: # The Effect Question: | What is the effect o | f <u></u> | on | | ? | | | |---|--------------------------|--------------|--|---------------|--|--| | | sunlight | or | n the growth of plants | | | | | | eye color | pι | apil dialation | | | | | | brands of soda | a į | piece of meat | | | | | | temperature | th | e size of a balloon | | | | | | oil | a I | ramp | | | | | 7 | The How Does | 4ffect (| Question: | | | | | How does the | | affect | | _? | | | | | lor of light | | e growth of plants | | | | | | ımidity | | e growth of fungi | | | | | CO | lor of a material | its | absorption of heat | | | | | Which/Whatpa | per towel ods | is do makes | most absorbent
meal worms prefe
the most bubbles | ?
r | | | | • | per towel
anut butter | is
tastes | strongest
the best | | | | | Now its your turn: Create your Science Fair question using either the "Effect Question", the "How does Affect Question" or the "Which/What and Verb Question": | | | | | | | | | | | | | | | # Step 2: Doing the Research and forming a Hypothesis So you've picked your category and you've chosen a topic. You even wrote a question using our cool fill in the blank template. Now it is time to research your problem as much as possible. Becoming an expert at your topic is what real scientists do in real labs. # So How do you become an expert? #### YOU READ!!!! READ about your topic. READ encyclopedias. READ magazine articles and books from the library. READ articles from the internet. Take note of any new science words you learn and use them. It makes you sound more like a real scientist. Keep Track of all the books and articles you read. You'll need that list for later. #### YOU DISCUSS!! Talk about it with your parents. Talk about it with your teachers. Talk about it with experts like Veterinarians, Doctors, Weathermen or others who work with the things you are studying. Sometimes websites will give you e-mail addresses to experts who can answer questions.... But again, do not write to anyone on the internet without letting an adult supervise it. (*hint: take pictures of yourself interviewing people) ### Whew.... Then when you think that you can't possibly learn anymore and the information just keeps repeating itself.. You are ready to... # Write a Hypothesis Now it is the time to PREDICT what you think will happen if you test your problem. This type of "SMART GUESS" or PREDICTION is what real scientists call A HYPOTHESIS. Using this fancy word will amaze your friends and will have you thinking like a full fledged scientist. So how do you begin? Well, just answer this very simple question: ### Tulhat do you think will happen, (even before you start your experiment)? Which Paper Towel is more absorbent? **Example Problem:** I think Brand X will be more absorbent because it's a more **Example Hypothesis:** popular brand, it is thicker and the people I interviewed said that the more expensive brands would work better (This hypothesis not only predicts what will happen in the experiment, but also shows that the "Scientist" used research to back up his prediction.) # Now its your turn: Write down the problem and create a Hypothesis based on what you have researched. Problem:____ **Research:** My problem is about this subject: (sample topics could be magnetism, electricity, buoyancy, absorbency, taste, plant growth, simple machines or other scientific topics that relate to your problem. If you are having problems finding out what the topic is, ask your teacher or an adult to help you on this one....) **Books I found in the library on my topic are:** Title: Author: **Internet sites that I found on my topic are:** People I talked to about my topic are: Some important points that I learned about my topic are Hypothesis: I think that _____ (will happen) because (my research shows...)_____ # Step 3: Testing your Hypothesis by doing an experiment Now we've come to the good part. The part that all scientists can't wait to get their grubby little hands on... you guessed it... The EXPERIMENT! Designing an experiment is really cool because you get to use your imagination to come up with a test for your problem, and most of all, you get to prove (or disprove) your Hypothesis. Now Science Fair Rules state that you cannot perform your experiment live, so you'll have to take plenty of pictures as you go through these seven very simple steps. **First: Gather up your materials.** What will you need to perform your experiment? The safest way to do this is get that adult you recruited to help you get the stuff you need. Oh, did we mention to take pictures or draw pictures of your materials. This will come in handy when you are making your board display. **Second: Write a PROCEDURE.** A procedure is a list of steps that you did to perform an experiment. Why do you need to write it down? Well it's like giving someone a recipe to your favorite dish. If they want to try it, they can follow your steps to test if its true. Scientists do this so that people will believe that they did the experiment and also to let other people test what they found out. Did we mention to take pictures of yourself doing the steps? Third: <u>Identify your variables</u>. The variables are any factors that can change in an experiment. Remember that when you are testing your experiment you should only test one variable at a time in order to get accurate results. In other words, if you want to test the affect that water has on plant growth, then all the plants you test should be in the same conditions, these are called **controlled variables**: same type of dirt, same type of plant, same type of location, same amount of sunlight, etc. The only variable you would change from plant to plant would be the amount of water it received. This is called the **independent or manipulated variable**. The independent variable is the factor you are testing. The results of the test that you do are called the **dependent or responding variables**. The responding variable is what happens as a result of your test. Knowing what your variables are is very important because if you don't know them you won't be able to collect your data or read your results. **Fourth:** <u>TEST, TEST.</u> Remember that the judges expect your results to be consistent in order to be a good experiment, in other words, when you cook from a recipe you expect the outcomes to be the same if you followed the directions (or procedure) step by step. So that means you need to do the experiment more than once in order to test it properly. We recommend five times or more. <u>More is better!</u> Don't forget to take pictures of the science project being done and the results. **Fifth:** <u>Collect your DATA.</u> This means write down or record the results of the experiment every time you test it. Be sure You also need to organize it in a way that it is easy to read the results. Most scientists use tables, graphs and other organizers to show their results. Organizing makes the results easy to read, and much easier to recognize patterns that might be occurring in your results. (Besides, it impresses the judges when you use them.) But don't make a graph or table because we asked you to, use it to benefit your project and to help you make sense of the results. There is nothing worse than having graphs and tables that have nothing to do with answering the question of a science project. ## Time out: How Do You Collect Data?!!? - **Keep a science journal:** A science journal is a type of science diary that you can keep especially if your experiment is taking place over a long period of time. We suggest you do that if your experiment is over a period of a week or more. In your journal you can record observations, collect research, draw and diagram pictures and jot down any additional questions you might have for later. - Have the right tools to do the job: make sure you have the stuff you need to take accurate measurements like rulers, meter tapes, thermometers, graduated cylinders or measuring cups that measure volume. The recommended standard of measurement in science is metric so if you can keep your measurements in meters, liters, Celsius, grams, etc, you are doing great! - Tables, charts and diagrams are generally the way a good scientist like you would keep track of your experiment trials. Remember you are testing at least 5 times or more. A table is organized in columns and rows and ALWAYS has labels or headings telling what the columns or rows mean. You will probably need a row for every time you did the experiment and a column telling what the independent variable was (what you tested) and the responding variable (the result that happened because of the independent variable) | Plant | Amount of water per day | Size it grew
in two weeks | | |-----------------------|---------------------------|------------------------------|--| | (controlled variable) | (independent
variable) | (responding variable) | | | Plant A | none | .5 cm | | | Plant B | 5 ml | 2 cm | | | Plant C | 10 ml | 5 cm | | | Plant D | 20 ml | 7 cm | | - **Be accurate and neat!** When you are writing your tables and charts please make sure that you record your data in the correct column or row, that you write neatly, and most of all that you record your data as soon as you collect it **SO YOU DON'T FORGET WHAT HAPPENED!!!!** Sometimes an experiment might be hard to explain with just a table, so if you have to draw and label a diagram (or picture) to explain what happened, it is recommended that you do. - **Use the right graph for your experiment.** There is nothing worse than a bad graph. There are all types of graph designs, but these seem to be easy to use for science fair experiments. - **Pie graphs** are good to use if you are showing percentages of groups. Remember that you can't have more than 100% and all the pieces need to add up to 100%. This type of graph is great if you are doing surveys - Bar graphs are good to use if you are comparing amounts of things because the bars show those amounts in an easy to read way. This way the judges will be able to tell your results at a glance. Usually the bars go up and down. The x axis (or horizontal axis) is where you label what is being measured, (like plant A, B, C and D) and the y axis (or vertical axis) is labeled to show the unit being measured (in this case it would be centimeters that the plant grew) • Line graphs are good to use if you are showing how changes occurred in your experiments over time. In this particular case you would be using the x axis to show the time increments (minutes, hours, days, weeks, months) and then you would use the Y axis to show what you were measuring at that point in time. ###And Now back to the Experiment Steps **Sixth:** Write a Conclusion: tell us what happened. Was your hypothesis right or wrong or neither? Were you successful, did it turn out okay? Would you change anything about the experiment or are you curious about something else now that you've completed your experiment. And most of all, **TELL WHAT YOU LEARNED FROM DOING THIS.** **Seventh:** <u>Understand its Application</u>. Write about how this experiment can be used in a real life situation. Why was it important to know about it? # Now it's your turn | Materials: (take picture: | (!)
Ill need for your science experiment he | re: | | |---|---|---------------------------------|--| | 1 | | | | | 2 | _ | | | | 3 | _ | | | | 4 | 9 | g | | | 5 | 10 | | | | Variables: List the variables that you will be the results of your ex | vill control, the variable that you will ch
operiment: | ange and the variables that | | | My controlled variables are | (the stuff that will always stay the san | ne): | | | | (this is the thing that changes from one | e experiment to the next, it is | | | My responding variables mi | ght be (in other words, the results of th | e experiment) | | | List the steps that you have | Don't forget to take pictures) to do in order to perform the experime | ent here: | | | _2nd | | | | | _3rd | | | | | 4th | | | | | _5th | | | | | | | | | | | | | | | | | | | # Design a table or Chart here to Collect your information (Did we mention that you needed to take pictures of you doing the actual experiment?) Use the Graph paper at the end of this booklet to make a graph of your results from your table. Conclusion: Now tell us what you learned from this and if you were able to prove your hypothesis. Did it work? Why did it work or why didn't it work? What did the results tell you? Sometimes not being able to prove a hypothesis is important because you still proved something. What did you prove? Application: (How does this apply to real life?) Its important to know about this experiment because..... # Step 4: The Presentation or Why you needed all those pictures.... #### But First, a school Fable.... Sammy and Sally both baked cakes for the bake sale with the same cake mix and by following the same directions. When Sammy got his cake out of the oven, he carefully took it out of the pan, smoothed the chocolate frosting neatly and decorated his cake so that it looked delicious. Sally on the other hand, smashed her cake slightly when getting it out of the pan and globbed the frosting on parts of the cake. As you may have already guessed, everyone wanted some of Sammy's cake and no one wanted Sally's. Sally couldn't figure out why, because she tasted both and they both tasted the same... A good display is a Piece o'cake You may have become the leading expert of your topic and had the most interesting experiment results, but if you don't make your science project look delicious for the judges eyes to see, well, your chances of winning sweep-stakes will crumble like Sally's cake. Your display board is kind of like an advertisement for all your hard work. So take our advice: **BE NEAT!!** The judges like to see a nice, easy to read display, that has neat writing, easy to read graphs and tables and you guessed it.... lots and lots of pictures!! (Did you remember to take pictures?) # MAKING A MOUTH WATERING DISPLAY This is an example of a neat looking Science Fair Display Board. It is just an example. Depending on your information and the amount pictures, tables and graphs, you may have a different layout. Just make sure it is #### Display Beauty Secrets: - Use a computer to type out your information, but if you can't, write out your information in your best writing. Printing the titles is usually best. If you are using a computer, make sure the fonts are readable and only use one or two type faces. - Use spray adhesive or glue stick to paste up your papers. It is less messy tions that you used to conduct the experiment. Mount white paper, pictures, graphs and tables on colored papers (making sure the colored paper is larger so it creates a border for the white paper.) # are looking for # What those not What you should so scary Judges do the day of the Science Fair (4th & 5th grade) Relax, smile and have fun, remember you are the expert and you had fun doing the project. But if you are a little Helpful Hint: Look sharp, feel sharp and you will be sharp. Dress nice that nervous, we listed the stuff you need to do during the presentation to meet the criteria of the judges form. A lot of kids are scared of talking to a judge. Just imagine the judge as a fellow scientist who just wants you to share what you learned... But just so it's not such a mystery, we've listed all the stuff that is on the judges form that they want you to do: | Criteria | Worth | how many
points? | | day, be polite and speak clearly and you will show the judges that you have confidence. Don't forget to look them in the eyes, they really are quite nice. | |--|-----------|---------------------|----------|---| | Clearly stated title, pur
and reasonable hypoth | | 2 points | | Introduce yourself, point out the title of your display and tell the judge why you chose to study this. State your problem that you studied (your question) Also tell them about your hypothesis (what you think might happen) | | 2. In depth report on scie topic | ence | 2 points | — | Hand a copy of your report to the judge so that they can review your research. Talk about what you learned while researching your topic | | 3. 3 or more resources cit | ted | 2 points | | Talk about the sources (books, websites and interviews) that helped you understand your topic. To get top marks you need to have at least 3 sources. | | 4. Thoroughly stated proc
and materials | edures | 2 points | → | Tell about your experiment, the steps you took to do it . Be sure to mention all the materials involved and point out all of those lovely pictures! | | 5. Clearly stated variables controls | s and | 2 points | | Point out the controlled variables, independent variable and responding variables to the experiment, (you know the stuff you kept the same, the thing you tested and the results) | | 6. Measurable data that in
3 or more trials or wher
human subjects, 10 peo
more | n testing | 3 points | | Be sure to show them that you tested your experiment at least 3 times. Show them all of the cool graphic organizers that you made, like your tables and charts. Remember to point out the labeled parts of your graph or table to show that you know what it represents. | | 7. Effective analysis of dat
clearly stated results (g
charts and tables) | | 3 points | — | Be sure and explain what your data means. Make sure you can read your graphs and tables. Let them know if you were surprised by the results, or if you knew what would happen because you studied about it. | | 8. In-depth knowledge ba
topic with use of related
vocabulary at grade leve | d | 3 points | → | Make sure you sound like an expert at your topic. Always use the appro-
priate vocabulary especially by using words from the Scientific Method
like: Problem, Hypothesis, Procedure, Variables, Results and Conclusion. | | Well elaborated conclus based on results | sion | 3 points | — | Let the judge know if you were right about your hypothesis. What did you conclude about your problem? Did you find another problem to investigate based on what you learned? The conclusion is all about what you learned from doing this. | | 10. Stated real life connec | tions. | 2 points | | Judges love this one, because it gives a real world purpose to your topic. It makes you sound like a real scientist in a real lab which you are!! For example, "My experiment about paper towel absorbency could help people save money by buying the right type of paper towels" See how useful that sounds? | | 11. Effective closure of presentation | | 2 points | → | Nothing makes a judge feel worse than to make a kid so nervous that they repeat themselves or they stop their presentation before they are really done. If you get lost or forget where you are, look at your display and follow it piece by piece. It is better to discuss everything than to forget to tell the judge something. When you are done, shake hands with the judge and thank them for their time, remember that they are volunteers who care about you! | | | | DE Dalata | | | Total possible points 25 Points 24-25 points= Sweepstakes!!!! # Science Fair Rules and Regulations # Aw!, you mean there are rules? Of course there are, silly, this is made by adults! Safety Rules First - 1. Number one rule... think safety first before you start. Make sure you have recruited your adult to help you. - Never eat or drink during an experiment and always keep your work area clean. - Wear protective goggles when doing any experiment that could lead to eye injury. - 4. Do not touch, taste or inhale chemicals or chemical solutions. - 5. Respect all life forms. Do not perform an experiment that will harm an animal. - 6. All experiments should be supervised by an adult! - 7. Always wash your hands after doing the experiment, especially if you have been handling chemicals or animals. - 8. Dispose waste properly. - 9. Any project that involves drugs, firearms, or explosives are not permitted. - 10. Any project that breaks school policy, and/or local, state or federal laws are not permitted. - 11. Use safety on the internet! Never write to anyone without an adult knowing about it. Be sure to let an adult know about what websites you will be visiting, or have them help you search. - 12. If there are dangerous aspects of your experiment, like using sharp tools or experimenting with electricity, please have an adult help you or have them do the dangerous parts. That's what adults are for, so use them correctly. (Besides, it makes them feel important!) ### Science Fair Rules - 1. Maximum of 2 students per entry, you can work by yourself or with a partner but no more than two students per group. - 2. Adults can help, in fact we want them to get involved. They can help gather materials, supervise your experiment and even help build the display. They just can't be with you during the judging. (So parents, no peeking!) - 3. Experiments are required, please make sure you have at least three variables and conduct three tests. You will be judged on the use of the Scientific Method (we told you that on page 2.) - 4. You cannot bring the materials of your experiment for the display or perform the experiment live. You will only be judged on your presentation and board. You can however, mount things on your board in a type of 3D display, but remember that your board has to be able to stand by itself, so don't get carried away. If you do mount things on the board, try not to mount something expensive that you bought and make sure you have things mounted securely so they don't fall off. YOU MAY NOT MOUNT ANY FOOD OR ORGANIC MATERIALS! - 5. Displays must be on display boards or can be made with cardboard. They must stand alone. See the display making page if you need a diagram. - 6. Limit your presentation to 10 minutes at the most, 5-7 minutes on speaking and the rest for the judges to ask questions. - 7. No recording or transmitting devices are permitted.. (no tape recorders or secret walkie talkies, cell phones or other James Bond toys.) - 8. Respect all adults involved in the fair... especially the judges! - 9. All decisions of the judges and science fair committee are final. # If you are chosen to continue at the Charter Fair, you must have a research paper including... Title Page: This contains the title, the name of the student, grade level and date. Table of Contents: list all the pages of your research paper and what they contain. Introduction: Background research to your project. (See step 2) One to three pages long. **A Works Cited and Acknowledgement page** is at the end listing all the research sources such as books, authors, websites and people interviewed for the project. If you completed everything in this packet you probably have a terrific science fair project, and you are now a real scientist! Good Job! But... If you still need more ideas, here is a list websites that you can check out about science fair projects to give you even more ideas. #### Websites #### **Internet Public Library** http://www.ipl.org/div/kidspace/projectguide/ Are you looking for some help with a science fair project? If so, then you have come to the right place. The IPL will guide you to a variety of web site resources, leading you through the necessary steps to successfully complete a science experiment. #### **Discovery.com: Science Fair Central** http://school.discovery.com/sciencefaircentral/ "Creative investigations into the real world." This site provides a complete guide to science fair projects. Check out the 'Handbook' which features information from Janice VanCleave, a popular author who provides everything you need to know for success. You can even send her a question about your project. #### Science Fair Idea Exchange http://www.halcyon.com/sciclub/cgi-pvt/scifair/guestbook.html This site has lists of science fair project ideas and a chance to share your ideas with others on the web! #### Cyber-Fair http://www.isd77.k12.mn.us/resources/cf/welcome.html This site has one-sentence explanations of each part of a science fair. One of the steps described is presenting your project to judges. This may or may not be a part of your science fair. The site also has an explanation of what makes a good project and an explanation of how to come up with your own science fair project. #### **Try Science** http://tryscience.com Science resource for home that gives you labs to try and 400 helpful links all related to science ### The Yuckiest Site in the Internet http://yucky.kids.discovery.com/ Brought to you by Discovery Kids, this site gives you lots of ideas on how to do the messiest yuckiest experiments # **Experimental Science Projects: An Introductory Level Guide** http://www.isd77.k12.mn.us/resources/cf/SciProjIntro.html An excellent resource for students doing an experiment-based science fair project. There are links on this page to a more advanced guide and an example of an actual experiment-based project. # Gateway to Educational Materials: Science Fair Projects http://members.ozemail.com.au/~macinnis/scifun/projects.htm The Gateway to Educational Materials extensive and detailed step-by-step guide to doing a science fair project. #### **Science Fair Primer** http://users.rcn.com/tedrowan/primer.html A site to help students get started and run a science fair project. #### **Science Fair Project Guidebook** http://www.energy.sc.gov/K-12/science_fair.htm The State of South Carolina publishes a K-12 science fair guidebook. It can be viewed using Adobe Acrobat Reader. #### **Science Project Guidelines** http://www.thesciencefair.com/guidelines.html The scientists at the Kennedy Space Center have participated in judging local school science fairs for many years and have some great suggestions for student research projects. This information by Elizabeth Stryjewski of the Kennedy Space Center is now provided on a commercial site. #### The Ultimate Science Fair Resource http://www.scifair.org/ A variety of resources and advice, #### What Makes A Good Science Fair Project http://www.usc.edu/CSSF/Resources/Good_Project.html A website from USC that gives a lot of good tips and ideas to think about regarding what makes a good science fair project. Advice for students as well as teachers and parents is included. #### Mr. McLaren's Science Fair Survival Page http://www.ri.net/schools/East_Greenwich/Cole/sciencefair.html Tips from Archie R. Cole Junior High school on what makes a good project. # Neuroscience for Kids: Successful Science Fair Projects http://faculty.washington.edu/chudler/fair.html Site made by Lynne Bleeker a former science teacher, science fair organizer, and judge. Gives a thorough and detailed description of the steps to a successful science fair project | | • | | | |--|---|--|--| | | | | |